A coupled theory of fluid permeation and large deformations for elastomeric materials
نویسندگان
چکیده
An elastomeric gel is a cross-linked polymer network swollen with a solvent (fluid). A continuum-mechanical theory to describe the various coupled aspects of fluid permeation and large deformations (e.g., swelling and squeezing) of elastomeric gels is formulated. The basic mechanical force balance laws and the balance law for the fluid content are reviewed, and the constitutive theory that we develop is consistent with modern treatments of continuum thermodynamics, and material frame-indifference. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model for the free energy based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechanical model for the change in configurational entropy — a model which accounts for the limited extensibility of polymer chains. As representative examples of application of the theory, we study (a) three-dimensional swelling-equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the following one-dimensional transient problems: (i) free-swelling of a gel; (ii) consolidation of an already swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric membranes.
منابع مشابه
Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations
Wave propagation in elastomeric materials undergoing large deformations is relevant in numerous application areas, including nondestructive testing of materials and ultrasound techniques, where finite deformations and corresponding stress states can influence wave propagation and hence interpretation of data. In the case of periodically structured hyperelastic solids, the effect of deformation ...
متن کاملNonlocal Vibration of Embedded Coupled CNTs Conveying Fluid Under Thermo-Magnetic Fields Via Ritz Method
In this work, nonlocal vibration of double of carbon nanotubes (CNTs) system conveying fluid coupled by visco-Pasternak medium is carried out based on nonlocal elasticity theory where CNTs are placed in uniform temperature change and magnetic field. Considering Euler-Bernoulli beam (EBB) model and Knudsen number, the governing equations of motion are discretized and Ritz method is applied to ob...
متن کاملA Modification on Applied Element Method for Linear Analysis of Structures in the Range of Small and Large Deformations Based on Energy Concept
In this paper, the formulation of a modified applied element method for linear analysis of structures in the range of small and large deformations is expressed. To calculate deformations in the structure, the minimum total potential energy principle is used. This method estimates the linear behavior of the structure in the range of small and large deformations, with a very good accuracy and low...
متن کاملNonlinear Instability of Coupled CNTs Conveying Viscous Fluid
In the present study, nonlinear vibration of coupled carbon nanotubes (CNTs) in presence of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory. CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal magnetic field. Using von Kármán geometric nonlinearity and Hamilton’s principle, the nonlinear higher order governing equations are deriv...
متن کاملCoupled Vibration of Partially Fluid-Filled Laminated Composite Cylindrical Shells
In this study, the free vibration of partially fluid-filled laminated composite circular cylindrical shell with arbitrary boundary conditions has been investigated by using Rayleigh-Ritz method. The analysis has been carried out with strain-displacement relations based on Love’s thin shell theory and the contained fluid is assumed irrotational, incompressible and inviscid. After determining the...
متن کامل